Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1961). 14, 309

The beryllium-boron system.* DONALD E. SANDS, CARL F. CLINE, ALLAN ZALKIN and CLARENCE L. HOENIG, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 5 July 1960)

The existence of beryllium-boron phases with compositions near Be₂B, BeB₂ and BeB₆ was reported by Markovskii, Kondrashev & Kaputovskaia (1955), hereafter referred to as M.K.K. A fourth phase, beryllium-rich, was observed, but its composition was not established. Markovskii, Kondrashev & Goryacheva (1955) found that Be₂B has the CaF₂ structure with a=4.670 Å. In addition to verifying these results, we have prepared and studied single crystals of BeB₂ and 'BeB₆', and we have obtained a powder pattern of the beryllium-rich phase.

Samples of the beryllium borides were prepared by sintering pressed powdered mixtures of the elements in BeO crucibles under an argon atmosphere. Homogenization was carried out at 1400 to 1600 °C. The amorphous boron used contained 96% boron and about 3% oxygen, with less than 1% metallic impurities. Spectroscopic analysis of the beryllium metal showed 0.1 to 0.2% each of Si, Fe, Mn, Mg, and Al, and trace amounts of Cr and Cu.

The powder patterns were photographed with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å). Intensities were estimated visually by comparison with a standard scale. The increased complexity of our powder patterns over those published diagrammatically by M.K.K. may be due to our higher sintering temperatures.

'Be₆B'

Characterization of this material is still incomplete; no chemical analyses have been performed, nor were single crystals obtained. Maximum relative intensity of

Table 1. Powder pattern of 'Be₆B'

Ι	d	I	d
5	3.51 Å	5	1·762 Å
20	3.32	70	1.732(b)
45	3.03	5	1.683
$\overline{5}$	2.68 (c)	100	1.671
15	2.43	5	1.647(c)
5	2.386	5	1.597
85	$2 \cdot 346 (c)$	10	1.560
10	$2 \cdot 253$	5	1.521
10	2.186(a)	15	1.472
10	2.045(a)	35	1.438
4 0	1.979(b)	5	1.416
$\overline{5}$	1.912	5	1.384
15	1.791~(b)		
= broad	lines. (b)	=Be lines.	$(c) = Be_2 B$ lines

* This work was performed under the auspices of the U.S. Atomic Energy Commission.

(a)

the powder diffraction lines of this phase was achieved with an initial Be:B ratio of about 6:1. The first 25 lines of this pattern are listed in Table I. Pure beryllium accounts for several of the intense lines, and some Be_2B is also present.

Be₂B

Our powder pattern of Bc_2B is listed in Table 2; a few additional lines due to ' Bc_6B ' are not included. This pattern gave a = 4.663 Å.

Table 2. Powder pattern of Be₂B

I	d	hkl	Ι	d	hkl
60	2.69 Å	111	10	1.070 Å	331
25	2.335	200	5	1.043	420
100	1.648	220	60	0.953	422
15	1.407	311	20	0.898	511
10	1.347	222	30	0.824	440
3 0	1.166	400	20	0.788	531

BeB₂

Chemical analysis of material prepared with the initial Be:B ratio approximately 1:2 gave $29\cdot3\pm0\cdot2\%$ Be, weighed as BeO, and $70\cdot8\pm0\cdot5\%$ B, titrated as boric acid. The presence of about 1% BeO in the sample, as indicated by the powder pattern, is within the limits of the accuracy of the analysis. The stoichiometry computed from these figures is BeB_{2.01 ± 0.03}.

Single crystals were selected from samples of crushed BeB₂, and oscillation and Weissenberg photographs taken with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å) showed a hexagonal unit cell with

$a = 9.79 \pm 0.02, c = 9.55 \pm 0.02 \text{ Å}$.

The Laue symmetry is P6/mmm, and there are no systematic extinctions. The density of a powdered sample, measured by pycnometer, was 2.42 g.cm.⁻³; however, flotation tests on individual fragments showed a variation from 2.32 to 2.48 g.cm.⁻³. The density reported by M.K.K. was 2.35 g.cm.⁻³. This density range indicates 36 to 38 BeB₂ groups per unit cell.

The intensities of 361 independent reflections, of which 103 were too weak to be observed, were measured visually on multiple-film Weissenberg exposures taken with Cu $K\alpha$ radiation. The statistical distribution of intensities (Howells, Phillips & Rogers, 1950) was hypercentric (Lipson & Woolfson, 1952) with no appreciable difference between the distributions for the three-dimensional data and for the projections. The probable space group is therefore P6/mmm. Efforts to interpret the threedimensional Patterson function have so far been unsuccessful. We plan to extend the quantity and quality of the data by counter techniques. boron; the only apparent change when a sample of 'BeB₆' was melted (at 2300 $^{\circ}$ C.) and cooled was the appearance on the powder patterns of three weak lines at 3.70, 3.36, and 3.06 Å.

The first 32 lines of a typical powder pattern of 'BeB₆' are listed in Table 4.

I	d	$hk \cdot l$	Ι	d	$hk \cdot l$
75	9∙5 Å	00.1	40	2·339 Å	31.0(b)
55	8.5	10.0	15	2.287	∫ 31·1 10·4
25	6.38	10.1	10	2.260	21.3
15	4.91	11.0	25	2.188	(<i>b</i>)
65	4.36	11.1	40	$2 \cdot 142$	11.4
20	4.24	20.0	5	2.083	(c)
10	4.17	10.2	40	2.060	<i>(b)</i>
50	3.87	20.1	15	2.024	(c)
25	3.49	(c)	10	1.948	32.0
10	3.37	(c)	5	1.894	31.3
25	3 ·20	$ \left\{\begin{array}{c} 00.3\\ 31.0 \end{array}\right. $	5	1.862	$\begin{cases} 21.0 \\ 10.5 \end{cases}$
10	3.04	21.1	30	1.820	$\left\{\begin{array}{c} 21 \cdot 1 \\ 30 \cdot 4 \end{array} (a)\right.$
50	2.98	10.3	10	1.762	40·3
25	2.83	30.0	25	1.742	20.5
35	2.71	3 0·1	30	1.694	50.0
100 -	2.66	21.2	60	1.661	$32 \cdot 3$
75	2.54	20.3	75	1.631	33.0
50	2.45	22.0	40	1.598	$\left\{ egin{array}{c} 00{\cdot}6\ 50{\cdot}2\ (b) \end{array} ight.$
10	2.385	$\left\{\begin{array}{c} 22\cdot1\\00\cdot4\end{array}(a)\right.$	50	1.582	30.5
$(\alpha) =$	broad lin	es. $(b) = BeO.$	(c) =	unidentif	ied impurity.

Table 3 lists the first 38 lines observed on the powder pattern of BeB_2 . Besides BeB_2 and BeO, this pattern shows a trace of an unidenfitied impurity.

'BeB₆'

Chemical analysis of material prepared with the initial Be:B atomic ratio 1:6 gave $12.8 \pm 0.2\%$ Be, $86.3 \pm 0.5\%$ B. These data suggest a phase BeB_{5.88 ± 0.25} containing $1.5 \pm 1.1\%$ BeO.

A single crystal of this brick-red phase was selected from crushed material and examined by oscillation and Weissenberg methods. A tetragonal unit cell, nearly identical with that of AlB_{12} (Halla & Weil, 1939), was found. Using the AlB_{12} dimensions

$$u = 10.16, c = 14.28$$
 Å

(Kohn, Katz & Giardini, 1958), 28 BeB₆ groups per unit cell give a calculated density of $2\cdot33$ g.cm.⁻³. The density measured by pyenometer is $2\cdot35$ g.cm.⁻³, and that reported by M.K.K. is $2\cdot33$ g.cm.⁻³.

As in the case of AlB_{12} , the diffraction symmetry and systematic extinctions are characteristic of space groups $P4_32_12$ and $P4_12_12$. Comparison of single crystal photographs shows a general similarity in the intensities in the two materials; however, pronounced differences in individual reflections are frequently apparent.

A tetragonal polymorph of elemental boron dimensionally resembling AlB_{12} has been reported by Talley, LaPlaca & Post (1960). When melted and subsequently cooled, this polymorph transforms to β -rhombohedral

	Table	4. Powder	patterns of '	BeB ₆ '	
I	d	hkl	Ι	d	hkl
15	8·3 Å	101	5	3.06 Å	302
15	$7\cdot 2$	110	20	2.93	312
00	0.45		~	0.00	(214
80	0.42	111	Э	2.80	1 320
					<u>(</u> 105
10	5.81	102	55	2.76	303
					321
80	5.08	f 112	40	9.66	f 115
00	0.60	(200	40	2.00	313
5	4.77	201	15	2.61	322 (a)
10	4.54	910	20	9.53	∫ 224
10	101	210	20	2 00	400
100	4.32	∫ 103	15	9.49	∫ 205
100	T 0 2	211	10	2 10	(401
90	4.14	202	35	2.46	∫ 304
00		202	00	- 10	{ 410
					215
40	3.96	113	35	2.422	323
					1 411
			•		314
55	3.84	212	15	2.390	$\begin{cases} 402 \\ 300 \end{cases}$
		6			{ 330
10	3.58	J 004	45	2.332	412(b)
		(220			(227
		(202	20	2.2.4	225
$\mathbf{\tilde{5}}$	3.46	1 203	20	2.247	$\begin{cases} 403 (a) \\ 401 \end{cases}$
		(221			(421
20	3.29) 213	35	2.187	J 305 (0)
		(301			(413
~	0.01	114			(000
Э	3.21	222	10	2.161	J 200
90	9.19	(310	50	9.059	(422 (439 /L)
20	3.13	311	90	2.098	423 (0)
	(a = broad.	(b) = BeO		

Further studies, of compositions richer in boron, are planned. Our present data do not exclude the possibility that BeB_6 represents the low-boron side of a homogeneity range that extends to pure boron, the presence of beryllium preventing the high temperature transition to β -rhombohedral boron.

References

- HALLA, F. & WEIL, R. (1939). Z. Kristallogr. 101, 435.
 HOWELLS, E. R., PHILLIPS, D. C. & ROGERS, D. (1950).
 Acta Cryst. 3, 210.
- KOHN, J. A., KATZ, G. & GIARDINI, A. A. (1958). Z. Kristallogr. 111, 1.
- LIPSON, H. & WOOLFSON, M. M. (1952). Acta Cryst. 5, 680.
- MARKOVSKII, L. Y., KONDRASHEV, Y. D. & GORYACHEVA, I. A. (1955). Dokl. Akad. Nauk S.S.S.R. 101, 97.
- MARKOVSKII, L. Y., KONDRASHEV, Y. D. & KAPUTOV-SKAIA, G. V. (1955). Zhur. Obshchei Khim. 25, 1045.
- TALLEY, C. P., LAPLACA, S. & POST, B. (1960). Acta Cryst. 13, 271.

Table 3. Powder pattern of BeB₂